Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Life Sci ; 345: 122608, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574885

RESUMO

BACKGROUND AND AIMS: The protein phosphatase 1 regulatory inhibitor subunit 1A (PPP1R1A) has been linked with insulin secretion and diabetes mellitus. Yet, its full significance in pancreatic ß-cell function remains unclear. This study aims to elucidate the role of the PPP1R1A gene in ß-cell biology using human pancreatic islets and rat INS-1 (832/13) cells. RESULTS: Disruption of Ppp1r1a in INS-1 cells was associated with reduced insulin secretion and impaired glucose uptake; however, cell viability, ROS, apoptosis or proliferation were intact. A significant downregulation of crucial ß-cell function genes such as Ins1, Ins2, Pcsk1, Cpe, Pdx1, Mafa, Isl1, Glut2, Snap25, Vamp2, Syt5, Cacna1a, Cacna1d and Cacnb3, was observed upon Ppp1r1a disruption. Furthermore, silencing Pdx1 in INS-1 cells altered PPP1R1A expression, indicating that PPP1R1A is a target gene for PDX1. Treatment with rosiglitazone increased Ppp1r1a expression, while metformin and insulin showed no effect. RNA-seq analysis of human islets revealed high PPP1R1A expression, with α-cells showing the highest levels compared to other endocrine cells. Muscle tissues exhibited greater PPP1R1A expression than pancreatic islets, liver, or adipose tissues. Co-expression analysis revealed significant correlations between PPP1R1A and genes associated with insulin biosynthesis, exocytosis machinery, and intracellular calcium transport. Overexpression of PPP1R1A in human islets augmented insulin secretion and upregulated protein expression of Insulin, MAFA, PDX1, and GLUT1, while silencing of PPP1R1A reduced Insulin, MAFA, and GLUT1 protein levels. CONCLUSION: This study provides valuable insights into the role of PPP1R1A in regulating ß-cell function and glucose homeostasis. PPP1R1A presents a promising opportunity for future therapeutic interventions.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Secreção de Insulina/genética , Linhagem Celular , Glucose/metabolismo , Canais de Cálcio/metabolismo
2.
Biomol Ther (Seoul) ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589288

RESUMO

Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-XL, and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.

3.
Brain Res Bull ; 209: 110917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428507

RESUMO

PURPOSE: Fentanyl, a fully synthetic opioid, is widely used for severe pain management and has a huge abuse potential for its psychostimulant effects. Unlike other opioids, the neurotoxic effects of chronic fentanyl administration are still unclear. In particular, little is known about its effect on the cerebral cortex. The current study aims to test the chronic toxicity of fentanyl in the mice model. METHODS: Adult male Balb/c mice were chronically treated with low (0.05 mg/kg, i.p) and high (0.1 mg/kg, i.p) doses of fentanyl for 5 consecutive weeks, and various neurotoxic parameters, including apoptosis, oxidative stress, and neuroinflammatory response were assessed in the cortex. Potential histological as well as neurochemical changes were also evaluated. RESULTS: The results of this study show that chronic fentanyl administration induced intense levels of apoptosis, oxidative stress, and neuroinflammation in the cerebral cortex. These findings were found to be correlated with histopathological characteristics of neural degeneration and white matter injury. Moreover, fentanyl administration was found to reduce the expression of both NMDA receptor subunits and dopamine receptors and elevate the level of epidermal growth factor (EGF). CONCLUSION: Fentanyl administration induced neurotoxic effects in the mouse cerebral cortex that could be primarily mediated by the evoked oxidative-inflammatory response. The altered expression of NMDA receptors, dopamine receptors, and EGF suggests the pernicious effects of fentanyl addiction that may end in the development of toxic psychosis.


Assuntos
Fator de Crescimento Epidérmico , Fentanila , Camundongos , Masculino , Animais , Fentanila/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Dor/tratamento farmacológico , Córtex Cerebral
4.
Pharm. pract. (Granada, Internet) ; 22(1): 1-14, Ene-Mar, 2024. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-231378

RESUMO

Objective: This study aimed to provide a comprehensive overview of self-medication practices among students by conducting a bibliometric analysis of the available scientific literature. This research highlights the importance of promoting safe and responsible healthcare behaviors among students. Methods: A systematic search was conducted in the Scopus database to retrieve all peer-reviewed English articles and reviews published from 1968 onwards. The retrieved documents were analyzed to identify publication trends, citation counts, top journals, geographical distribution, and emerging research themes. Results: The findings indicate a significant increase in published literature about student self-medication over the past fifteen years. However, it was observed that the citation count for these documents was lower than expected, suggesting a need for increased attention toward this critical topic. The analysis also identified several hot topics in student self-medication, including the misuse of over-the-counter medications, dietary supplements, and psychoactive substances. The inappropriate use of antibiotics and the self-medication of mental health issues, such as anxiety and depression, were also identified as significant problems. Conclusions and recommendations: Self-medication among students is a complex and critical issue that requires immediate attention. This study highlights the urgent need for greater awareness and education regarding responsible self-medication practices among students. New policies, interventions, and strategies should be developed to address malpractices, misconceptions, and harmful practices related to self-medication. Educational institutions and health authorities should play a crucial role in providing students with mental health resources and support services... (AU)


Assuntos
Humanos , Adulto Jovem , Automedicação , Cuidados Médicos , Medicamentos sem Prescrição , Suplementos Nutricionais , Antibacterianos , Saúde Mental , Ansiedade , Depressão
5.
Front Pharmacol ; 15: 1324001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313315

RESUMO

The global burden of cancer continues to rise, underscoring the urgency of developing more effective and precisely targeted therapies. This comprehensive review explores the confluence of precision medicine and CDC25 phosphatases in the context of cancer research. Precision medicine, alternatively referred to as customized medicine, aims to customize medical interventions by taking into account the genetic, genomic, and epigenetic characteristics of individual patients. The identification of particular genetic and molecular drivers driving cancer helps both diagnostic accuracy and treatment selection. Precision medicine utilizes sophisticated technology such as genome sequencing and bioinformatics to elucidate genetic differences that underlie the proliferation of cancer cells, hence facilitating the development of customized therapeutic interventions. CDC25 phosphatases, which play a crucial role in governing the progression of the cell cycle, have garnered significant attention as potential targets for cancer treatment. The dysregulation of CDC25 is a characteristic feature observed in various types of malignancies, hence classifying them as proto-oncogenes. The proteins in question, which operate as phosphatases, play a role in the activation of Cyclin-dependent kinases (CDKs), so promoting the advancement of the cell cycle. CDC25 inhibitors demonstrate potential as therapeutic drugs for cancer treatment by specifically blocking the activity of CDKs and modulating the cell cycle in malignant cells. In brief, precision medicine presents a potentially fruitful option for augmenting cancer research, diagnosis, and treatment, with an emphasis on individualized care predicated upon patients' genetic and molecular profiles. The review highlights the significance of CDC25 phosphatases in the advancement of cancer and identifies them as promising candidates for therapeutic intervention. This statement underscores the significance of doing thorough molecular profiling in order to uncover the complex molecular characteristics of cancer cells.

6.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38399410

RESUMO

Hypoxia-inducible factor-1 (HIF-1) is a key regulator for balancing oxygen in the cells. It is a transcription factor that regulates the expression of target genes involved in oxygen homeostasis in response to hypoxia. Recently, research has demonstrated the multiple roles of HIF-1 in the pathophysiology of various diseases, including cancer. It is a crucial mediator of the hypoxic response and regulator of oxygen metabolism, thus contributing to tumor development and progression. Studies showed that the expression of the HIF-1α subunit is significantly upregulated in cancer cells and promotes tumor survival by multiple mechanisms. In addition, HIF-1 has potential contributing roles in cancer progression, including cell division, survival, proliferation, angiogenesis, and metastasis. Moreover, HIF-1 has a role in regulating cellular metabolic pathways, particularly the anaerobic metabolism of glucose. Given its significant and potential roles in cancer development and progression, it has been an intriguing therapeutic target for cancer research. Several compounds targeting HIF-1-associated processes are now being used to treat different types of cancer. This review outlines emerging therapeutic strategies that target HIF-1 as well as the relevance and regulation of the HIF-1 pathways in cancer. Moreover, it addresses the employment of nanotechnology in developing these promising strategies.

7.
Life Sci ; 339: 122421, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232799

RESUMO

AIMS: In this study, we investigated the role of the FTO gene in pancreatic ß-cell biology and its association with type 2 diabetes (T2D). To address this issue, human pancreatic islets and rat INS-1 (832/13) cells were used to perform gene silencing, overexpression, and functional analysis of FTO expression; levels of FTO were also measured in serum samples obtained from diabetic and obese individuals. RESULTS: The findings revealed that FTO expression was reduced in islets from hyperglycemic/diabetic donors compared to normal donors. This reduction correlated with decreased INS and GLUT1 expression and increased PDX1, GCK, and SNAP25 expression. Silencing of Fto in INS-1 cells impaired insulin release and mitochondrial ATP production and increased apoptosis in pro-apoptotic cytokine-treated cells. However, glucose uptake and reactive oxygen species production rates remained unaffected. Downregulation of key ß-cell genes was observed following Fto-silencing, while Glut2 and Gck were unaffected. RNA-seq analysis identified several dysregulated genes involved in metal ion binding, calcium ion binding, and protein serine/threonine kinase activity. Furthermore, our findings showed that Pdx1 or Mafa-silencing did not influence FTO protein expression. Overexpression of FTO in human islets promoted insulin secretion and upregulated INS, PDX1, MAFA, and GLUT1 expression. Serum FTO levels did not significantly differ between individuals with diabetes or obesity and their healthy counterparts. CONCLUSION: These findings suggest that FTO plays a crucial role in ß-cell survival, metabolism, and function and point to a potential therapeutic utility of FTO in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Ratos , Animais , Secreção de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/genética , Obesidade/metabolismo , Glucose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
8.
Biomol Ther (Seoul) ; 32(1): 38-55, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38148552

RESUMO

Cancer is a global health challenge with high morbidity and mortality rates. However, conventional cancer treatment methods often have severe side effects and limited success rates. In the last decade, extensive research has been conducted to develop safe, and efficient alternative treatments that do not have the limitations of existing anticancer medicines. Plant-derived compounds have shown promise in cancer treatment for their anti-carcinogenic and anti-proliferative properties. Rosmarinic acid (RA) and carnosic acid (CA) are potent polyphenolic compounds found in rosemary (Rosmarinus officinalis) extract. They have been extensively studied for their biological properties, which include anti-diabetic, anti-inflammatory, antioxidant, and anticancer activities. In addition, RA and CA have demonstrated effective anti-proliferative properties against various cancers, making them promising targets for extensive research to develop candidate or leading compounds for cancer treatment. This review discusses and summarizes the anti-tumor effect of RA and CA against various cancers and highlights the involved biochemical and mechanistic pathways.

9.
Heliyon ; 9(9): e19234, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662743

RESUMO

Rosmarinic acid (RA), a natural ester phenolic compound, is known to have antioxidant and anti-inflammatory properties. RA has also been reported to exhibit a hypoglycemic effect; however, the mechanisms underlying this effect have yet to be investigated. Therefore, the present study focused on the anti-diabetic effects and mechanism of RA in INS-1 cells using in vitro model. Streptozotocin (STZ) at a concentration of 3 mM was applied to INS-1 cells for 4 h to create a diabetic model. The cells were pretreated for 24 h with various concentrations (1 and 2.5 µM) of RA. The Cell viability, glucose-stimulated insulin secretion (GSIS), glucose uptake, lipid peroxidation, reactive oxygen species (ROS), apoptosis, and protein expression of Bcl-2, NF-κB, 1L-1ß, and PARP were assessed. Results showed that STZ-treated INS-1 cells exhibited reduced cell viability, insulin release, insulin content, glucose uptake, and elevated MDA and ROS levels. Cells pretreated with RA maintained the function and morphology of ß-cells against STZ-induced damage. Moreover, RA sustained high protein expression levels of Bcl-2 and low expression levels of NF-κB, IL-1ß, and PARP. In conclusion, RA preserved ß-cells function against STZ-induced damage by altering NF-κB and Bcl-2 pathways.

10.
Heliyon ; 9(6): e16706, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332907

RESUMO

Calotropis procera is a perennial flowering plant of the Apocynaceae family, traditionally used in medicine to treat various ailments. Recent investigations have revealed its potential therapeutic activities such as anti-inflammatory, gastroprotective, analgesic, anti-obesity, and anti-diabetic properties. RP-HPLC qualitatively and quantitatively evaluated the phenolic acids and flavonoids in the ethanolic extract at two different wavelengths, 280 and 330 nm. In addition, total phenolic and flavonoid contents were measured via spectrophotometric determination in addition to the antioxidant activity. The antiproliferative effects of C. procera were investigated on two cancer cell lines: human colon (HCT-116) and breast (MCF-7) cancer. Several methods were utilised to analyse the effectiveness of the plant extract on the cytotoxicity, apoptosis, cell cycle progression, genes involved in the cell cycle, and protein expression profiles of HCT-116 and MCF-7 cells. These included the MTT assay, Annexin V-FITC/PI, analysis of the cell cycle, and Western blot. Results indicated that ferulic and caffeic acids were the major compounds at λmax 280 nm (1.374% and 0.561%, respectively), while the major compounds at λmax 325 nm were kaempferol and luteolin (1.036% and 0.512%, respectively). The ethanolic extract had significantly higher antioxidant activity (80 ± 2.3%) compared to ascorbic acid (90 ± 3.1%). C. procera extract exhibited dose-dependent cell growth inhibition, with an estimated IC50 of 50 µg/mL for MCF-7 and 55 µg/mL for HCT-116 cells at 24 h. Annexin V-FITC/PI confirmed the induction of apoptosis. Remarkably, cell cycle arrest occurred at the sub-G1 phase in MCF-7 cells, while in HCT-116 cells, it was observed at the G2-M phase. The sub-G1 arrest was associated with dysregulation of Akt, p-AKT, mTOR, and p-mTOR proteins, as confirmed by the Western blot analysis, while downregulation of CDK1, cyclin B1, and survivin caused G2-M arrest.

11.
Mol Cell Endocrinol ; 574: 111987, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37311518

RESUMO

The role of "Family with sequence similarity 105, member A" (FAM105A) in pancreatic ß-cell function in relation to type 2 diabetes mellitus (T2D) is not fully understood. To address this issue, various molecular and functional experiments were conducted on primary human islets and INS-1 cells. RNA-seq expression analysis showed that FAM105A is highly expressed in human islets and its expression is reduced in diabetic islets compared to healthy islets. FAM105A expression correlated negatively with HbA1c levels and body mass index (BMI). Co-expression analysis showed a significant correlation between FAM105A with PDX1, GCK, GLUT1 and INSR, but not the INS gene. Silencing of Fam105a impaired insulin release, content, glucose uptake, and mitochondria ATP content but did not affect cell viability, reactive oxygen species (ROS) or apoptosis levels. Silencing of Fam105a was associated with reduced Pdx1 and Glut2 expression at mRNA and protein levels. RNA-seq analysis of dysregulated genes in Fam105a-silenced cells showed an overall downregulation of gene expression in ß-cells and insulin secretion pathway. Disrupting Pdx1 did not affect Fam105a expression in INS-1 cells. Overall, the results suggest that FAM105A plays an important role in pancreatic ß-cells biology and may be involved in the development of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Secreção de Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sobrevivência Celular/genética , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo
12.
Vet World ; 16(4): 693-703, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37235145

RESUMO

Background and Aim: Human monkeypox is an emerging global threat. Hundreds of publications were disseminated in the last few months. This study aimed to map, analyze, and evaluate the bibliometric indicators of the global monkeypox research output. Materials and Methods: All documents published in the past 20 years were retrieved using the Scopus database. Papers published in English and peer-reviewed journals were included. VOSviewer was used to create density and network visualization maps. Results: A total of 1725 published documents were retrieved. Of these, 53% were published in 2022. The average number of authors per document was 4.2. Authors from the USA were the most active and published about 42.1% of the total documents. International collaboration was evident between the USA and both UK and Congo. Keywords mapping identified the main research lines in this field that correlate monkeypox with public health, smallpox, vaccination, and antiviral treatment. Conclusion: This study analyzed and mapped the expanding field of monkeypox research across the world. The bibliometric analysis revealed that the United States has contributed greatly in terms of both individual researchers and academic institutions. There was less cooperation on a global scale than was anticipated. Fostering international cooperation is essential for countering this worldwide danger. Additional scientific research should be conducted to investigate the link between smallpox immunization and monkeypox epidemics.

13.
Life Sci ; 323: 121687, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030613

RESUMO

Endothelin-1 (ET-1) contributes to the development of kidney diseases. However, the underlying molecular mechanism is largely undefined. Here we sought to investigate the potential role of ET-1 receptors, ETA and ETB in the regulation of increased glomerular permeability and underlying signaling pathways post-ET-1 infusion. Male Sprague-Dawley rats were infused with ET-1 (2 pmol/kg per minute, i.v.) for four weeks, and the effect on glomerular permeability to albumin (Palb) and albuminuria was measured. The selective ROCK-1/2 inhibitor, Y-27632, was administered to a separate group of rats to determine its effect on ET-1-induced Palb and albuminuria. The role of ETA and ETB receptors in regulating RhoA/ROCK activity was determined by incubating isolated glomeruli from normal rats with ET-1 and with selective ETA and ETB receptor antagonists. ET-1 infusion for four weeks significantly elevated Palb and albuminuria. Y-27632 significantly reduced the elevation of Palb and albuminuria. The activities of both RhoA and ROCK-1/2 were increased by ET-1 infusion. Selective ETB receptor antagonism had no effect on the elevated activity of both RhoA and ROCK-1/2 enzymes. Selective ETA receptor and combined ETA/ETB receptors blockade restored the activity of RhoA and ROCK-1/2 to normal levels. In addition, chronic ET-1 infusion increased the levels of glomerular inflammatory and fibrotic markers. These effects were all attenuated in rats following ROCK-1/2 inhibition. These observations suggest that ET-1 contributes to increased albuminuria, inflammation, and fibrosis by modulating the activity of the ETA-RhoA/ROCK-1/2 pathway. Selective ETA receptor blockade may represent a potential therapeutic strategy to limit glomerular injury and albuminuria in kidney disease.


Assuntos
Endotelina-1 , Nefropatias , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Albuminúria , Antagonistas dos Receptores de Endotelina , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo
14.
Exp Biol Med (Maywood) ; 248(4): 339-349, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36740767

RESUMO

Mounting evidence points to a link between growth differentiation factor-15 (GDF15) expression and the onset and progression of diabetes mellitus. However, the exact role of GDF15 in pancreatic ß-cell function is unclear. To examine the role of GDF15 in ß-cell function, bioinformatics analysis and functional experiments involving GDF15 silencing and overexpression were performed in INS-1 cells and human islets. Public microarray and RNA-seq expression data showed that islets obtained from diabetic donors express high levels of GDF15 compared to islets obtained from normal donors. Moreover, analysis of RNA-seq expression data revealed that GDF15 expression correlates positively with that of insulin (INS), KCNJ11, GLUT1, MAFA, INSR and negatively with that of Glucokinase (GCK) and Alpha-Ketoglutarate Dependent Dioxygenase (FTO). No T2D-associated genetic variants in the GDF15 were found to pass genome-wide significance in the TIGER portal. Expression silencing of Gdf15 in INS-1 cells reduced insulin release, glucose uptake levels, increased reactive oxygen species (ROS) production and apoptosis levels. While Gdf15-silenced cells downregulated mRNA expression of Ins, Pdx1, Mafa, and Glut2 genes, its overexpression human islets was associated with increased insulin secretion and upregulated expression of MAFA and GLUT1 but not INS or GCK. Silencing of Pdx1 or Mafa in INS-1 cells did not affect the expression of GDF15. These findings suggest that GDF15 plays a significant role in pancreatic ß-cell function.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Secreção de Insulina , Transportador de Glucose Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674867

RESUMO

Untargeted multi-omics analysis of plasma is an emerging tool for the identification of novel biomarkers for evaluating disease prognosis, and for developing a better understanding of molecular mechanisms underlying human disease. The successful application of metabolomic and proteomic approaches relies on reproducibly quantifying a wide range of metabolites and proteins. Herein, we report the results of untargeted metabolomic and proteomic analyses from blood plasma samples following analyte extraction by two frequently-used solvent systems: chloroform/methanol and methanol-only. Whole blood samples were collected from participants (n = 6) at University Hospital Sharjah (UHS) hospital, then plasma was separated and extracted by two methods: (i) methanol precipitation and (ii) 4:3 methanol:chloroform extraction. The coverage and reproducibility of the two methods were assessed by ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). The study revealed that metabolite extraction by methanol-only showed greater reproducibility for both metabolomic and proteomic quantifications than did methanol/chloroform, while yielding similar peptide coverage. However, coverage of extracted metabolites was higher with the methanol/chloroform precipitation.


Assuntos
Metanol , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Metanol/química , Clorofórmio , Reprodutibilidade dos Testes , Proteômica
16.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675128

RESUMO

Skin cancer, including malignant melanoma (MM) and keratinocyte carcinoma (KC), historically named non-melanoma skin cancers (NMSC), represents the most common type of cancer among the white skin population. Despite decades of clinical research, the incidence rate of melanoma is increasing globally. Therefore, a better understanding of disease pathogenesis and resistance mechanisms is considered vital to accomplish early diagnosis and satisfactory control. The "Omics" field has recently gained attention, as it can help in identifying and exploring metabolites and metabolic pathways that assist cancer cells in proliferation, which can be further utilized to improve the diagnosis and treatment of skin cancer. Although skin tissues contain diverse metabolic enzymes, it remains challenging to fully characterize these metabolites. Metabolomics is a powerful omics technique that allows us to measure and compare a vast array of metabolites in a biological sample. This technology enables us to study the dermal metabolic effects and get a clear explanation of the pathogenesis of skin diseases. The purpose of this literature review is to illustrate how metabolomics technology can be used to evaluate the metabolic profile of human skin cancer, using a variety of analytical platforms including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). Data collection has not been based on any analytical method.


Assuntos
Metaboloma , Neoplasias Cutâneas , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Neoplasias Cutâneas/diagnóstico
17.
Ann Med ; 55(2): 2305308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38253025

RESUMO

BACKGROUND: Glioblastoma (GBM) is a primary malignancy of the central nervous system and is classified as a grade IV astrocytoma by the World Health Organization (WHO). Although GBM rarely metastasizes, its prognosis remains poor. Moreover, the standard treatment for GBM, temozolomide (TMZ), is associated with chemoresistance, which is a major factor behind GBM-related deaths. Investigating drugs with repurposing potential in the context of GBM is worthwhile to bypass lengthy bench-to-bedside research. The field of omics has garnered significant interest in scientific research because of its potential to delineate the intricate regulatory network underlying tumor development. In particular, proteomic and metabolomic analyses are powerful approaches for the investigation of metabolic enzymes and intermediate metabolites since they represent the functional end of the cancer phenotype. METHODS: We chose two of the most widely prescribed anticancer drugs, cisplatin and paclitaxel. To our knowledge, the current literature lacks studies examining their effects on metabolic and proteomic alterations in GBM. We employed the mass spectrometry technological platform 'UHPLC-Q-TOF-MS/MS' to examine the changes in the proteome and metabolome profiles of the U87 cell line with defined concentrations of cisplatin and/or paclitaxel via an untargeted approach. RESULTS: A total of 1,419 distinct proteins and 90 metabolites were generated, and subsequent analysis was performed. We observed that upon treatment with cisplatin (9.5 µM), U87 cells exhibited apparent efforts to cope with this exogenous stressor, understanding the effect of paclitaxel (5.3 µM) on altering the transport machinery of the cell, and how the combination of cisplatin and/or paclitaxel suggests potential interactions with promising benefits in GBM therapeutics. CONCLUSION: Our research provides a detailed map of alterations in response to cisplatin and paclitaxel treatment, provides crucial insights into the molecular basis of their action, and paves the way for further research to identify molecular targets for this elusive malignancy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Cisplatino/farmacologia , Proteômica , Espectrometria de Massas em Tandem , Paclitaxel/farmacologia
18.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499742

RESUMO

The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has captivated the globe's attention since its emergence in 2019. This highly infectious, spreadable, and dangerous pathogen has caused health, social, and economic crises. Therefore, a worldwide collaborative effort was made to find an efficient strategy to overcome and develop vaccines. The new vaccines provide an effective immune response that safeguards the community from the virus' severity. WHO has approved nine vaccines for emergency use based on safety and efficacy data collected from various conducted clinical trials. Herein, we review the safety and effectiveness of the WHO-approved COVID-19 vaccines and associated immune responses, and their impact on improving the public's health. Several immunological studies have demonstrated that vaccination dramatically enhances the immune response and reduces the likelihood of future infections in previously infected individuals. However, the type of vaccination and individual health status can significantly affect immune responses. Exposure of healthy individuals to adenovirus vectors or mRNA vaccines causes the early production of antibodies from B and T cells. On the other hand, unhealthy individuals were more likely to experience harmful events due to relapses in their existing conditions. Taken together, aligning with the proper vaccination to a patient's case can result in better outcomes.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Anticorpos Antivirais , Imunidade
19.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364160

RESUMO

Kahweol and cafestol are two diterpenes extracted from Coffea arabica beans that have distinct biological activities. Recent research describes their potential activities, which include anti-inflammatory, anti-diabetic, and anti-cancer properties, among others. The two diterpenes have been shown to have anticancer effects in various in vitro and in vivo cancer models. This review aims to shed light on the recent developments regarding the potential effects of kahweol and cafestol on various cancers. A systematic literature search through Google Scholar and PubMed was performed between February and May 2022 to collect updates about the potential effects of cafestol and kahweol on different cancers in in vitro and in vivo models. The search terms "Kahweol and Cancer" and "Cafestol and Cancer" were used in this literature review as keywords; the findings demonstrated that kahweol and cafestol exhibit diverse effects on different cancers in in vitro and in vivo models, showing pro-apoptotic, cytotoxic, anti-proliferative, and anti-migratory properties. In conclusion, the diterpenes kahweol and cafestol display significant anticancer effects, while remarkably unaffecting normal cells. Our results show that both kahweol and cafestol exert their actions on various cancers via inducing apoptosis and inhibiting cell growth. Additionally, kahweol acts by inhibiting cell migration.


Assuntos
Coffea , Diterpenos , Neoplasias , Humanos , Diterpenos/farmacologia , Diterpenos/análise , Apoptose , Neoplasias/tratamento farmacológico , Café
20.
Toxics ; 10(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36355959

RESUMO

The widespread recreational use of synthetic cannabinoids (SCs) has become a serious health issue. Reports of life-threatening intoxications related to SC consumption have markedly increased in recent years, including neurotoxicity, cardiotoxicity, nephrotoxicity, and hepatotoxicity. We investigated the impact of acute administration of the synthetic cannabinoid XLR-11 (3 mg/kg, i.p. for 5 consecutive days) on the liver in BALB/c mouse animal model. Using real-time quantitative RT-PCR, MDA assay, and TUNEL assay, we found consistent up-regulation of a variety of genes involved in oxidative stress (NOX2, NOX4, and iNOS), inflammation (TNF-α, IL-1ß, IL-6), and apoptosis (Bax) in the liver of XLR-11 treated mice compared to control mice. These finding were supported with an elevation of MDA levels and TUNEL positive cells in the liver of XLR-11 treated mice which further confirm increased oxidative stress and apoptosis, respectively. Histopathological analysis of the liver of XLR-11 treated mice confirmed pronounced hepatic necrosis associated with inflammatory cell infiltration. Furthermore, elevated ALT and AST serum levels were also identified in XLR-11 treated mice indicating possible liver damage. Overall, SC-induced hepatotoxicity seems to be mainly mediated by activated oxidative stress and inflammatory processes in the liver, but the specific mechanisms involved require further investigations. However, the present study shed light on the potential deleterious role of acute administration of SCs in the progression to acute hepatic injury which enhances our understanding of the adverse effect of SC consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...